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The principle of exchange of stabilities (exchange principle) for the thermal 
stability problem has been provedby Pellew & Southwell (1940)for fluids bounded 
by two infinite, horizontal parallel planes. Chandrasekhar (1952) discussed the 
establishment of the exchange principle for the same geometry when the fluid 
is an electrical conductor and when an arbitrary oriented, uniform, external 
magnetic field is applied in the vertical direction. 

In  this paper, the exchange principle is examined for fluids completely confined 
in an arbitrary region with rigid bounding surfaces that are good electrical 
conductors with respect to the fluid. The uniform magnetic field is applied in an 
arbitrary direction. A generalized thermal boundary condition is imposed 
which includes the fixed temperature and prescribed heat-flux conditions as 
special cases. 

If no magnetic field is applied to the fluid, the present work reduces to a 
generalization (for completely confined fluids) of the Pellew & Southwell proof 
of the exchange principle. In the magnetohydrodynamic (MHD) thermal sta- 
bility problem, the exchange principle is found to be valid if the total kinetic 
energy associated with an arbitrary disturbance is greater than or equal to its 
total magnetic energy. In a special case it is demonstrated that a sufficient 
condition which will establish the exchange principle is k 6 7, where k is the fluid 
thermal diffusivity and 7 is the fluid electrical resistivity. 

1. Introduction 
In a certain class of stability problems, the unsteady terms may be eliminated 

from the governing linearized disturbance equations. A necessary condition 
for this to be valid is given by the principle of exchange of stabilities. In  simple 
terms the principle expresses the fact that while temporally oscillating distur- 
bances are not excluded, they will in fact be damped out. Notable mathematical 
simplification results from the use of the principle, since the transition from 
stability to instability occurs via a marginal stationary state. This state is 
characterized by the vanishing of both the real and imaginary parts of the 
complex time eigenvalue associated with the disturbance. 

The principle of exchange of stabilities was used by Rayleigh (1916) in the first 
theoretical investigation of the thermal stability problem for a layer of fluid 

t Now at the Rand Corporation, Santa Monica, California. 
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bounded by two infinite horizontal planes. Pellew & Southwell (1940) formally 
established the principle for Rayleigh’s geometrical configuration. Yih (1959) 
extended the proof for fluids bounded either by infinitely long, insulated vertical 
tubes or by vertical cylinders with insulated side walls and fixed-temperature 
rigid horizontal planes. Ostrach & Pnueli (1963), Velte (1964), and Weinbaum 
(1  964) treat the thermal stability problem for more arbitrary regions. Sparrow, 
Goldstein & Jonsson (1964) consider the horizontal layer configuration with a 
more general thermal boundary condition on the horizontal bounding planes. 
In all of these works the exchange principle is accepted and used without 
proof. 

The thermal stability problem has been extended to include the effect of a 
uniform, applied magnetic field on an electrically conducting fluid. Thompson 
(1951) discussed the establishment of the exchange principle for the MHD 
thermal stability problem, but his analysis is somewhat limited. He treats 
an inviscid layer of fluid bounded by two infinite horizontal planes. The uniform, 
applied magnetic field is alined with the direction of the non-magnetic body 
force. Chanclrasekhar (1952) examined the same configuration as Thompson 
but his paper goes somewhat further by including the effect of viscosity in the 
governing equations. Chandrasekhar begins by assuming a particularly simple 
solution to the governing time-dependent disturbance equations. He then 
demonstrates that the principle of exchange of stabilities will be valid if the fluid 
properties satisfy a certain necessary and sufficient condition, i.e. 

I% 6 7, 

where k is the fluid thermal diffusivity and 7 is the fluid electrical resistivity. 
However, the assumed solution modes satisfy a limited set of hydrodynamic 
and thermal boundary conditions. For the special case treated by Chandrasekhar, 
the horizontal bounding planes must be isothermal, free surfaces. Moreover, 
the gradient of the normal component of the induced magnetic field must vanish 
on these bounding planes. This artificial magnetic-field boundary condition would 
prove difficult to maintain in any realistic situation. 

In  an effort to establish the exchange principle for more general and more 
realistic boundary conditions on the horizontal planes so that the deficiencies 
in the above method are eliminated, Chandrasekhar (1952) also proceeded in an 
alternate manner. He extended the proof of the exchange principle developed 
by Pellew & Southwell (1940) for the thermal stability problem to include the 
effects of fluid electrical conductivity and a uniform, applied magnetic field 
acting in the vertical direction. 

Using this method, a variety of hydrodynamic and thermal boundary con- 
ditions may be specified on the horizontal bounding planes. These bounding 
surfaces must be good electrical conductors in comparison with the fluid in order 
to enforce certain necessary boundary conditions on the induced magnetic 
field. Chandrasekhar surmized the following from his alternate approach: 
It appears likely that in order for the exchange principle to be established in the 
MHD thermal stability problem, the total kinetic energy associated with a distur- 
bance must be greater than or equal to the total magnetic energy. Chandrasekhar 
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found that the method of Pellew & Southwell was not quite strong enough to 
demonstrate rigorously this supposition. 

In  what follows, the exchange principle is examined for an electrically con- 
ducting fluid that is completely confined within an arbitrary region whose bound- 
ing surfaces are rigid walls. A generalized thermal boundary condition may be 
specified on the bounding surfaces, and these surfaces must be good electrical 
conductors relative to the fluid. Previous analyses required the uniform, applied 
magnetic field to be alined with the non-magnetic body force. In  the present 
paper, the uniform field may be applied in an arbitrary direction. 

2. The governing equations 
Consider an arbitrary, completely enclosed region within which a quasi- 

incompressible (Boussinesq) fluid with a positive coefficient of thermal expan- 
sion is confined. By imposition of certain prescribed thermal boundary conditions 
on the rigid bounding walls, a constant temperature gradient is maintained 
parallel to the body force acting on the fluid. If the temperature gradient is in the 
direction of the body force, then a potentially unstable, ‘top-heavy ’ arrangement 
results. The object is to find the critical temperature gradient above which there 
is a tendency for the fluid to move in an attempt to remedy the unstable situation. 

The MHD thermal stability problem is associated with the solution of a set of 
linearized disturbance equations describing the interaction between perturba- 
tions in the magnetic field, modifications of the initial temperature distribution, 
and fluid motions. The non-magnetic momentum equation is modified to take 
into account the Lorentz force, while the continuity equation and the energy 
equation are exactly as in the non-magnetic analysis. To these equations one 
must adjoin Maxwell’s equations (incorporating the well-known MHD approxi- 
mation that neglects displacement currents and excess charge density in the 
bulk of the fluid) and Ohm’s law (in which Hall effects are neglected). Combining 
Maxwell’s equations and Ohm’s law in the usual manner so as to eliminate 
the electric field and the current density yields the so-called magnetic equation. 
Thus the MHD thermal stability problem is associated with the solution of the 
eigenvalue problem posed by? 

divu = 0, (2) 
1 

- - Ra - - gradp - curl curl u + Q (curl h) x i ,  
ipF - PI 

ae A 

-+u.k = V28, 
at 

--- curl (u x 2) = - curl curl h, 
Pz ah 
P~ at 

div h = 0 ,  (6) 

where Chandrasekhar’s notation has been used. I n  the above dimensionless 
governing equations, u is the disturbance velocity, 0 is the temperature modifica- 

t The assumptions used in deriving these equations are discussed by Chandrasekhar 
(1961). 
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tion of the initial linear profile, p is the pressure deviation from the initial dis- 
tribution, and h is the induced magnetic field. The direction of the uniform, 
applied magnetic field is given by the unit vector l ,  and the direction of the non- 
magnetic body force is given by the unit vector f .  The equations were cast in 
dimensionless form by introducing the following characteristic quantities : 
a characteristic length d,  the maximum dimension of the region in the non- 
magnetic body-force direction; a characteristic velocity kld; a characteristic 
pressure pk2/d2 ,  where p is the mean fluid density; a characteristic temperature 
difference Pd, where /3 is the constant temperature gradient; a characteristic time 
d a / k ;  and a characteristic induced magnetic field (El?) H,, where H, is the mag- 
nitude of the applied field. 

Four parameters appear in the equations: Prandtl number, PI = v /k ,  where 
v is the fluid kinematic viscosity; magnetic Prandtl number, Pz = v / r ;  magneto- 
viscous parameter (square of Hartmann number), Q = ,uHgd2/4npvy, where 
,u is the fluid magnetic permeability; and Rayleigh number, Ra = - g ~ $ d ~ / k v ,  
where g is the non-magnetic body force per unit mass in the - i( - 2)-direction 
and a is the fluid coefficient of thermal expansion. The Rayleigh number is a 
positive quantity when p, the temperature gradient, is negative (directed with 
the body force). 

3. The boundary conditions 
Associated with these equations are a set of homogeneous, time-independent 

boundary conditions. Since this analysis is limited to regions completely confined 
by rigid walls, the no-slip and no-through-flow conditions require that all velocity 
components vanish on the bounding surfaces. Thus 

u = o  (B.C. 1)  
on rigid walls for all times. 

A general thermal convective-radiative exchange between the fluid and its 
surrounding environment may be prescribed at  a surface. In  this situation, 
Sparrow, Goldstein & Jonsson (1964) show that the temperature perturbation 
6 must satisfy 

VB.h+BiO = 0 (B.C. 2) 

on the surface for all times. Here the Biot number Bi = hd/K has been introduced. 
h is the positive, time-independent conductance coefficient from the surface 
to the environment and K is the fluid thermal conductivity (note that the Biot 
number is always positive). For large values of the Biot number, the surface has 
the character of the fixed temperature surface (6 = 0). For small values of the 
Biot number, the surface boundary condition approaches that for prescribed 
heat flux (V6.k = 0). 

Recall that the initial temperature distribution is fixed in this analysis to be 
linear in the direction of the body force. This is the basic cause of the instability 
under consideration. Hence care must be exercised to insure that the thermal 
boundary conditions are prescribed so as to be consistent with this specification. 
The shape of the region under consideration will be a determining factor in the 
choice of these conditions. 
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The boundary condition to be imposed on the induced magnetic field requires 
some discussion. It is known that across any interface the tangential component 
of the electric field, e, must be continuous. Thus at  a bounding surface one has 

hx(e-e,) = 0, 

where e,  represents the induced electric field in the wall. Since u = 0 (B.C. 1) 
on all rigid walls then, using Ohm’s law, one can rewrite the above condition as 

G x (curlh-(r/a;) (curlh),) = 0, 

where u and rw are the electrical conductivities of the fluid and of the wall, 
respectively. If the wall’s electrical conductivity is large in comparison with the 
electrical conductivity of the fluid, then as r/rw + 0, 

Gxcurlh = 0 (BE. 3) 

on all bounding surfaces for all times. This boundary condition is the only con- 
dition needed on the induced magnetic field in the proof of the exchange principle 
that follows. 

Note for the non-magnetic case one of the boundaries could be a free surface. 
For a stationary free-surface there can be no through-flow so that 

u.2 = 0 ,  (B.C. 4a)  

where G is an outward normal to a surface element. Also, no tangential stresses 
are permitted on free surfaces. It can be shown that for planar, free surfaces 
the two conditions stated above together with the solenoidal property of the 
velocity field result in vorticity lines lying perpendicular to such surfaces, i.e. 

& x  curlu = 0. (B.C. 4 b )  

4. Proof 
Consider the time-dependent variables u,  8, p ,  and h to have the form 

u = U(x, y, z )  eat, p = Il(x, y, z )  e d ,  

8 = 0 ( x ,  y, z )  eat, h = H(x, y, x )  ed, 

where n is in general a complex quantity. Then from equations (2), (3), (4 ) ,  ( 5 ) ,  
and (6), a complex value of n is associated with the solutions U, 0, II, and H 
satisfying 

divU = 0, 
1 1 

n - U = - X u 0 8  --grad Il - curl curlU + &(curlH) x f, 
PI Pl 

na +u.i = PO, (9) 

n(P2/Pl) H - curl (U x f) = - curl curl H, (10) 

divH = 0, (11) 

and the homogeneous, time-independent boundary conditions previously speci- 
fied in Q 3. 
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The complex conjugate of n, n*, is associated with the solution set U*, 0*,  
II*, and H*. They satisfy the equations 

divU* = 0, (12) 

n*O*+U*.& = v~o* ,  (14) 

n*(P,/PJH*-curl(U* X I ! )  = curlcurlH*, (15) 

1 1 
n*--U* = - RaO * f -- grad IT * - curl curl U* + &(curlH*) x I! ,  (13) 

Pl Pl 

divH* = 0. (16) 

The boundary conditions for U*, O*, and H* are exactly the  same as those for 
U, 0, and H. 

Form the inner (dot) product of both sides of equation (8) with U* and then 
use equation (14) to eliminate U*.f from the resulting equation. After 
integrating the remaining terms over the region R with boundary B,  one obtains 

U.U*dV = -Ra @@*dV--  gradII.U*dV 
pl R SR '1 ' S  R 

curlcurlU.U*ddV+& (curlH) x i.U*dV. (17) 

The following integral transformations resulting from application of Gauss's 
theorem are then used: 

s, 

SR f B S R  

SR f B SR 
f R  f s, 

gradII.U*dV = IIU*.hdS- IIdivU*dV, (i) 

OV20*dV = @VO*..EidX- VO.VO*dV, (ii) 

(iii) 

In  equation (i), the surface integral vanishes since U* = 0, (B.C. l),  on all bound- 
ing surfaces. The volume integral on the right-hand side of equation (i) also 
vanishes since the velocity field is solenoidal throughout the region R. The 
surface integral in equation (iii) vanishes on all surfaces, (B.C. 1). Using the 
general convective-radiative exchange boundary condition, (B.C. 2), the surface 
integral in equation (ii) can be rewritten as 

curl curl U.U* dV = (curl U) x U *.h dS + curl U. curl U * dlr .  

OV@*.hdS = - Bi@@*dS. 

Of course in the two special cases, fixed temperature on all boundaries (0 = 0) 
or prescribed heat-flux on all boundaries (VO.h = 0), the surface integral in 
equation (ii) will vanish. The remaining integral in equation (17) can be trans- 
formed as follows : 

fB f B 

curl H x I!.U* dV = curl H.I! x U * d V. f , 
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Using the divergence theorem one can write 

curl H.% x U* d V = H x ( I !  x U*)& dX + H. curl (E x U*) d V .  s, I, L 
The surface integral vanishes since U* = 0, (B.C. 1) .  With the aid of equation (15), 
the volume integral on the right side is rewritten as 

H.curl(fxU*)dV = - H.curl(U*xI!)dV 

- - -  %* 5 1 H .H * d V -IR H. curl curl * d V .  
PI R 

Employing the divergence theorem to transform the second integral on the right 
side to positive definite form, one has 

H.curl(I!xU*)dV = 

curl H. curl H* d B - 

where the surface integral vanishes, since curl H*  x h = 0 (B.C. 3). The final 
result of these manipulations is 

(curlH*) x H.hdX, L 

(curlH) xI!.U*dV = - n * 3 /  H.H*dV-IR curlH.curlH*dV. (iv) 
pl R 

Applying equations (i)-(iv) to equation (17) yields 

(nipl) Il - Ra(Iz +I3) - Ran*I,+ 15+ Qn* (Pz/Pl) I6 + &I, = 0, 

where all Ii are real, positive definite integrals: 

Ii = IR curlH.curlH* d V.  

Separating the real and imaginary parts of equation (18), one has 

- Ra(Iz + 13) + 1, + &I, = 0, 

I m ( n )  

Consider the following two possibilities 

(1) Ra > 0 

If Il > P,Q16, then Ra > 0 implies that I m ( n )  = 0 from equation (2Ob).  
in this case n must be real. Of course, if II < PzQ16, then one cannot conclude 
that the imaginary part of n will vanish. 
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( 2 )  Ra < 0 

This implies that Re (n) < 0 from equation (20a). Thus if I -  2 P2QIB and n is to 
have an imaginary part, then the imaginary part must be associated with 
Re(n) < 0, a decaying perturbation. Instabilities (Re(%) > 0) are associated 
with real values of n. The limiting case for the onset of motion is now given by 
Re (n) = n = 0. Thus the transition from stability to instability occurs through 
a stationary state, and the principle of exchange of stabilities is established. 
A sufficient condition for the exchange principle to be valid is 

or in dimensional form 
I1 > PZQI,, 

Physically, this is equivalent to specifying that the total kinetic energy associ- 
ated with a disturbance is greater than, or equal to, its total magnetic energy. 
Chandrasekhar (1952) conjectured the above sufficiency condition, but he did 
not present a rigorous proof of the supposition as has been developed herein. 

If no external magnetic field is applied to the fluid, then Q = 0 in equations 
(20a) and ( 2 0 b ) .  Hence one recovers a generalization of the Pellew & Southwell 
proof of the exchange principle for horizontal layers. Here the exchange principle 
is established for arbitrary regions in which the fluid is initially heated from below. 

For this case (Q = 0 )  also a planar, free-surface can replace a rigid one. At 
such a surface, (B.C. 4) is utilized in equations (i) and (iii) instead of (B.C. 1) 
and the proof follows directly. 

5. The case of very large Q 
The sufficiency condition given by equation (21) to establish the exchange 

principle is of limited value since one cannot a priori be certain when this con- 
dition will be satisfied. It would be more useful to express the sufficiency con- 
dition in terms of fluid properties alone. Thompson and Chandrasekhar indicated 
this type of condition (equation (1)) but, as has been previously discussed, they 
studied the special horizontal layer geometry with a vertical , applied magnetic 
field. Moreover, a very artificial boundary condition must be maintained on the 
induced magnetic field at the horizontal bounding planes. 

We now consider the problem of finding a sufficiency condition related to 
quantities that are known a t  the beginning. If one operates on equation ( 7 )  
with l /Q  {n(P,/P,) - V2>, where of course V2 = grad div - curl curl, then one 
obtains 

n pz 1 

QPi Q 
-t- - - curl curl U + 2 x curl curl curl H = - - curl curl curl curl U. ( 2 2 )  

The solenoidal properties of the velocity U and of the induced magnetic field H 
have been used to derive equation ( 2 2 ) .  Multiply equation (22 )  by U* and use 
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equation (14) to eliminate U*& from the resulting equation. The remaining terms 
are then integrated over the region R. 

l x curl curl curlH.U* dV = curl curl curl curl U.U* d V .  (23) 
+ f, 
To obtain some insight into this problem, consideration will be given to the 

limiting case of very large Q (the ratio of magnetic to viscous forces). The effect 
of viscosity is thus significant near the bounding surfaces and in the above 
integrated equation, the integral on the right side (which results from the viscous 
force) is negligible in comparison with the last integral on the left side (resulting 
from the magnetic force). Of course the presence of viscosity will require u = 0, 
(B.C. l), at the rigid bounding surfaces; if these surfaces are much better electrical 
conductors than the fluid, h x curl h = 0, (B.C. 3). 

Thus we now work with equation (23) where the right side is equal to zero. 
It has been previously indicated how, upon application of Gauss' theorem, the 
second, fourth, fifth, and eighth integrals may be transformed to positive 
definite form. In addition, by employing Gauss's theorem in conjunction with 
solenoidal property of the velocity field, the seventh integral can be shown to 
vanish. The last integral is treated as follows: 

i x curl curl curlH.U* d V = curl curl curl H.U * x i d  V 

= j B  (curl curlH) x (U* x !).&id8 + curl curlH. curl (U* x 2) d V .  s, 
The surface integral vanishes since U* = 0 on all boundaries, (B.C. 1). The volume 
integral is rewritten with the aid of equation (15), thus 

!x curlcurlcurlH.U*dV = 

P - - .*Z/R 

where Gauss's theorem and (B.C. 3) have been used to make the last transforma- 
tion. After applying the above results to the integral equation (23) (with the right 
side equal to zero), one obtains 

P2 P2 
P? Pl +n?z,*>I +-(n+n*)I,+I, = 0, (24) 
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where I, through I, have been previously defined (see equation (19)) and 
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r r 

Taking the imaginary part of equation (24) yields 

Instabilities (Re (n) > 0) are associated with R a  > 0. Thus from equation (26) one 
concludes that a sufficient condition for Im (n) = 0 when Re (n) > 0 is 

P,/P, < 1 or k < 7. 

This is precisely the sufficient condition proposed by Thompson (1951) and 
Chandrasekhar (1953) to estFblish the exchange principle for the special cases 
they each treated. In  this section the result has been established for arbitrary 
configurations and for arbitrary direction of the applied magnetic field. The 
result is limited to situations where the magnetoviscous parameter, Q, is very 
large. 

6. Concluding remarks 
It should be pointed out that the proof of the exchange principle does not lead 

to the removal of the unsteady terms in all stability problems. For example, the 
Rayleigh-Taylor problem (i.e. the stability of a heterogeneous fluid layer 
with density and viscosity gradients parallel to the body force which is perpen- 
dicular to the fluid layer) is somewhat analogous to the thermal stability problem 
in that the initial configurations are seemingly identical. However, even though 
the exchange principle has been proven for that problem (see Chandrasekhar 
1955 and Selig 1964), the unsteady terms are always retained in its analysis 
(i.e. Re (n) is not set equal to zero). Sherman (1965) shows that it is not possible 
to obtain information about the marginal state of the Rayleigh-Taylor problem 
by removing the unsteady terms. 

The essential physical difference between the Rayleigh-Taylor and the thermal- 
stability problems is that in the former the adverse density gradient which 
promotes instability is destroyed by the motion (induced by the instability), 
i.e. the state after the instability sets in is a rest state. In  the latter case, the 
heating from below maintains the unstable density gradient so that a maintained 
convective flow (the BBnard cells) follows the instability (see Sherman 1965 
for more details). It thus appears that if conditions promoting the instability 
are removed by the action of the instability, then the unsteady terms must be 
retained in the analysis even if it  can be shown that the principle of exchange of 
stabilities is valid for the case under consideration. 

The authors wish to acknowledge the Air Force Office of Scientific Research 
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